Summary

The geometry system for 4-dimensional objects in Roblox Studio. The next step is to implement 4-dimensional physics, for which linear and angular motion systems have already been created but not documented here. Collision detection and resolution systems are not yet done.

Geometry

Similarly to how triangles (2-simplex) are used to define meshes in 3 dimensions, tetrahedrons (3-simplex) are used to define meshes in 4 dimensions. The geometry of 4 -dimensional objects is stored in five arrays :

- The vertices of the object (4×1 column vectors)
- The edges (as pairs of indices to the vertex array)
- The tetrahedrons (as quadruplets of indices to the vertex array)

Orientation and position are stored in a 5×5 matrix (referred to as a CFrame or coordinate frame) consisting of a 4×4 rotation matrix, 4×1 position vector, and 1×4 identity vector. The CFrame's columns can be interpreted as the right-vector, up-vector, forward-vector, w-vector, and position in world coordinates. The X, Y, Z, and W (right, up, forward, w) vectors together constitute the rotation matrix of the CFrame.

X_{x}	Y_{x}	Z_{x}	W_{x}	P_{x}
X_{y}	Y_{y}	Z_{y}	W_{y}	P_{y}
X_{z}	Y_{z}	Z_{z}	W_{z}	P_{z}
X_{w}	Y_{w}	Z_{w}	W_{w}	P_{w}
0	0	0	0	1
CFrame (5x5 matrix). Rotation matrix (4x4). Position (4x1)				

The position of any vertex of a shape can be obtained by multiplying its CFrame by the original position of the vertex.
vertexPosition = CFrame * originalVertexPosition

Rotation matrices can be inversed by taking their transpose. Similarly, a CFrame can be inversed by transposing the rotation matrix and setting the position to
(-(X • P), -(Y‧P), -(Z‧P), -(W • P))

Rotation matrices

Arbitrary orientations can be generated using the rotation matrices.
$\mathrm{R}_{X Y}=$

$\cos \theta$	$-\sin \theta$	0	0
$\sin \theta$	$\cos \Theta$	0	0
0	0	1	0
0	0	0	1

$\mathrm{R}_{\mathrm{xz}}=$

$\cos \theta$	0	$-\sin \Theta$	0
0	0	0	0
$\sin \theta$	0	$\cos \Theta$	0
0	0	0	1

$\mathrm{R}_{\mathrm{xw}}=$

$\cos \Theta$	0	0	$-\sin \Theta$
0	1	0	0
0	0	1	0
$\sin \Theta$	0	0	$\cos \Theta$

$\mathrm{R}_{\mathrm{YZ}}=$

1	0	0	0
0	$\cos \Theta$	$-\sin \Theta$	0
0	$\sin \Theta$	$\cos \Theta$	0
0	0	0	1

$\mathrm{R}_{\mathrm{YW}}=$

1	0	0	0
0	$\cos \theta$	0	$-\sin \theta$
0	0	1	0
0	$\sin \Theta$	0	$\cos \Theta$

$\mathrm{R}_{\mathrm{zw}}=$

1	-0	0	0
0	1	0	0
0	0	$\cos \Theta$	$-\sin \Theta$
0	0	$\sin \Theta$	$\cos \Theta$

Rendering

In this simulation, 4-dimensional objects are visualized by taking their cross-section or "slice". Slicing a tetrahedron produces 0,1 , or 2 triangles which can be directly rendered. Slicing a tetrahedron is done by individually slicing each edge of the tetrahedron (pre-computed from the vertices and tetrahedron arrays). To do so, write the equation of the edge as a linear interpolation between its two points

$$
\text { crossSectionPoint }=\text { vertexA * }(1-t)+\text { vertexB * }(t)
$$

setting w to 0

$$
\operatorname{vertexA}_{w} *(1-t)+\operatorname{vertexB}_{w} *(t)=0
$$

which yields

$$
\begin{gathered}
t=\text { vertexA }_{w} /\left(\text { vertexA }_{w}-\text { vertexB }_{w}\right) \\
t \in[0,1]
\end{gathered}
$$

which we can substitute into the linear interpolation to get the cross-section point. If t is outside of the bounds $[0,1]$ then the edge does not intersect the 3d hyperplane and does not have a cross-section.

