Yeah, you could use the key instead of the value and keep the value as a debugging info (most likely by printing the key and the value in the output).
so like this?
actionNumber == # and actionIndex == #
btw that from a for loop. Because I think that would work
Code:
local RS = game:GetService("ReplicatedStorage")
local Modules = require(RS:WaitForChild("Modules").Modules)
local machineLearning = Modules.MachineLearningModule
local nn_model = machineLearning.new(machineLearning.ModelType.NeuralNetwork)
local dt_model = machineLearning.new(machineLearning.ModelType.DecisionTree)
local NPC = workspace:WaitForChild("NPCFolder"):WaitForChild("tracedrounds")
local humanoid = NPC:FindFirstChildWhichIsA("Humanoid")
local humanoidRootPart = humanoid.RootPart
-- Define constants
local NUM_INPUTS = 4 -- Number of directions to consider
local NUM_HIDDEN = 48
local NUM_OUTPUTS = 4 -- For actions: move forward, move backward, turn left, turn right
local EPOCHS = 1000
local LEARNING_RATE = 0.1
local DEBUG_MODE = false
-- Example training data for the neural network
local trainingData = {
{0, 0}, -- Forward obstacle detected
{0, 1}, -- Backward obstacle detected
{1, 0}, -- Right obstacle detected
{1, 1}, -- Left obstacle detected
}
local trainingTargets = {
{1}, -- Move forward
{2}, -- Move backward
{3}, -- Turn left
{4}, -- Turn right
}
-- Initialize Neural Network model
nn_model:train({}, trainingTargets, {
numInputs = NUM_INPUTS,
numHidden = NUM_HIDDEN,
numOutputs = NUM_OUTPUTS,
epochs = EPOCHS,
learningRate = LEARNING_RATE,
debugMode = DEBUG_MODE
})
-- Define obstacle detection function
local function detectObstacles()
local obstacles = {}
local directions = {
{ direction = humanoidRootPart.CFrame.LookVector, name = "forward" },
{ direction = -humanoidRootPart.CFrame.LookVector, name = "backward" },
{ direction = humanoidRootPart.CFrame.RightVector, name = "right" },
{ direction = -humanoidRootPart.CFrame.RightVector, name = "left" }
}
for _, dir in ipairs(directions) do
local ray = Ray.new(humanoidRootPart.Position, dir.direction * 10)
local params = RaycastParams.new()
params.RespectCanCollide = true
params.FilterType = Enum.RaycastFilterType.Exclude
params.FilterDescendantsInstances = {NPC}
local result = workspace:Raycast(humanoidRootPart.Position, dir.direction * 10, params)
if result then
table.insert(obstacles, _)
else
table.insert(obstacles, 0)
end
end
return obstacles
end
-- Define action functions
local function moveForward()
humanoid:MoveTo(humanoidRootPart.Position + humanoidRootPart.CFrame.LookVector * 5)
end
local function moveBackward()
humanoid:MoveTo(humanoidRootPart.Position - humanoidRootPart.CFrame.LookVector * 5)
end
local function turnLeft()
humanoidRootPart.CFrame = humanoidRootPart.CFrame * CFrame.Angles(0, math.rad(-90), 0)
end
local function turnRight()
humanoidRootPart.CFrame = humanoidRootPart.CFrame * CFrame.Angles(0, math.rad(90), 0)
end
-- Function to choose action using the neural network model
local function chooseAction(obstacles)
-- Predict action based on obstacles
local output = nn_model:predict(obstacles)
print(output)
local actions = output
for actionNumber, actionIndex in ipairs(actions) do
-- Execute action
if actionNumber == 1 and actionIndex == 1 then
moveForward()
elseif actionNumber == 2 and actionIndex == 1 then
moveBackward()
elseif actionNumber == 3 and actionIndex == 1 then
turnLeft()
elseif actionNumber == 4 and actionIndex == 1 then
turnRight()
end
continue
end
end
-- Main loop
while true do
local obstacles = detectObstacles()
chooseAction(obstacles)
wait(1) -- Adjust as needed for your game
end
also sorry for showing code so much, I just want you (and maybe some other people to see the issue)
Well, I would recommend using table.concat and then using string.gmatch() to be able to use each one of these keys separately.
(you can also check out this post as it contains relevant information about this function)
So it would look like this:
local actionKey = table.concat(action, ", ")
for action in string.gmatch(actionKey, ",") do
-- Execute action
if actionNumber == 1 and actionIndex == 1 then
moveForward()
elseif actionNumber == 2 and actionIndex == 1 then
moveBackward()
elseif actionNumber == 3 and actionIndex == 1 then
turnLeft()
elseif actionNumber == 4 and actionIndex == 1 then
turnRight()
end
continue
end
(Sorry if the format is kinda messed up it’s hard to do tabs on phone)
No problem, it helps so it’s fine!
well, it is working but still but not moving just rotating I can give my place file real quick I just have to make a new one (I don’t like doing originals)
wait nevermind I just realized your on phone.
I can do recording. would that be okay so you see the output.
Yeah sure, so I can see how is the npc rotating too
The dot is the NPC if you didn’t know
the bottom ->. is what actually happening
It is moving but it doesn’t. For some reason
local RS = game:GetService("ReplicatedStorage")
local Modules = require(RS:WaitForChild("Modules").Modules)
local machineLearning = Modules.MachineLearningModule
local nn_model = machineLearning.new(machineLearning.ModelType.NeuralNetwork)
local dt_model = machineLearning.new(machineLearning.ModelType.DecisionTree)
local NPC = workspace:WaitForChild("NPCFolder"):WaitForChild("tracedrounds")
local humanoid = NPC:FindFirstChildWhichIsA("Humanoid")
local humanoidRootPart = humanoid.RootPart
-- Define constants
local NUM_INPUTS = 4 -- Number of directions to consider
local NUM_HIDDEN = 48
local NUM_OUTPUTS = 4 -- For actions: move forward, move backward, turn left, turn right
local EPOCHS = 1000
local LEARNING_RATE = 0.1
local DEBUG_MODE = false
-- Example training data for the neural network
local trainingData = {
{0, 0}, -- Forward obstacle detected
{0, 1}, -- Backward obstacle detected
{1, 0}, -- Right obstacle detected
{1, 1}, -- Left obstacle detected
}
local trainingTargets = {
{1}, -- Move forward
{2}, -- Move backward
{3}, -- Turn left
{4}, -- Turn right
}
-- Initialize Neural Network model
nn_model:train({}, trainingTargets, {
numInputs = NUM_INPUTS,
numHidden = NUM_HIDDEN,
numOutputs = NUM_OUTPUTS,
epochs = EPOCHS,
learningRate = LEARNING_RATE,
debugMode = DEBUG_MODE
})
-- Define obstacle detection function
local function detectObstacles()
local obstacles = {}
local directions = {
{ direction = humanoidRootPart.CFrame.LookVector, name = "forward" },
{ direction = -humanoidRootPart.CFrame.LookVector, name = "backward" },
{ direction = humanoidRootPart.CFrame.RightVector, name = "right" },
{ direction = -humanoidRootPart.CFrame.RightVector, name = "left" }
}
for _, dir in ipairs(directions) do
local ray = Ray.new(humanoidRootPart.Position, dir.direction * 10)
local params = RaycastParams.new()
params.RespectCanCollide = true
params.FilterType = Enum.RaycastFilterType.Exclude
params.FilterDescendantsInstances = {NPC}
local result = workspace:Raycast(humanoidRootPart.Position, dir.direction * 10, params)
if result then
table.insert(obstacles, 1)
else
table.insert(obstacles, 0)
end
end
return obstacles
end
-- Define action functions
local function moveForward()
humanoid:MoveTo(humanoidRootPart.Position + humanoidRootPart.CFrame.LookVector * 5) --humanoid:MoveTo(humanoidRootPart.Position + humanoidRootPart.CFrame.LookVector * 5)
end
local function moveBackward()
humanoid:MoveTo(humanoidRootPart.Position - humanoidRootPart.CFrame.LookVector * 5) --humanoid:MoveTo(humanoidRootPart.Position - humanoidRootPart.CFrame.LookVector * 5)
end
local function turnLeft()
humanoidRootPart.CFrame = humanoidRootPart.CFrame * CFrame.Angles(0, math.rad(-90), 0)
end
local function turnRight()
humanoidRootPart.CFrame = humanoidRootPart.CFrame * CFrame.Angles(0, math.rad(90), 0)
end
-- Function to choose action using the neural network model
local function chooseAction(obstacles)
-- Predict action based on obstacles
local output = nn_model:predict(obstacles)
local actions = output
print(output)
for actionNumber, actionIndex in ipairs(actions) do
local action = actionIndex
local actionKey = table.concat(actions, ", ")
for action in string.gmatch(actionKey, ",") do
-- Execute action
if actionNumber == 1 and actionIndex == 1 then
moveForward()
continue
elseif actionNumber == 2 and actionIndex == 1 then
moveBackward()
continue
elseif actionNumber == 3 and actionIndex == 1 then
turnLeft()
continue
elseif actionNumber == 4 and actionIndex == 1 then
turnRight()
continue
end
end
end
end
-- Main loop
while true do
local obstacles = detectObstacles()
chooseAction(obstacles)
task.wait()
end
do you know the error?
What about OpenML? Roblox is a more front-end game, why should people use this over OpenML? It’s not like this isn’t the backend. I might not be saying this correctly.
You there you haven’t responded at all?
You there? Its been awhile. I never gotten the solution.
His school probably started and he cant do anything 3thy character limit
oh okay. probably thats the reason.