Thank you for recommending k means clustering algorithms, currently I am using the Hartigan-Wong method, and have got the intended results.
However there is one more change I would like to make.
K-means clustering algorithms depend on the number of clusters, or k. Is there a way I can find the optimal k such that:
- Centroids do not cluster
- Centroids are not too dispersed
- Centroids appear uniformally distributed across the mesh
❌ Here is one example where centroids (the individual attachments) begin to cluster
k = 64
(64 clusters/centroids)
most noticeable at the bottom of the blade

❌ Here is another example where centroids are too dispersed
k = 8

Ideal value for k
k = 17 (i found this manually)
Minimal clustering but is accounted for with uniform distribution across the mesh / being accurate.

How would one calculate the ideal value for k?
Code
* no code provided is to calculate k for k is given in this case
--The goal is to get the ideal value for k to be calculated rather than be handed to the script
local k = 17 --number of clusters & centroids/attachments
local Target: MeshPart = script.Subject
local AssetService = game:GetService("AssetService")
local EditableMesh = AssetService:CreateEditableMeshFromPartAsync(Target)
local Triangles = EditableMesh:GetTriangles()
print(#Triangles, #Triangles * 3)
local function RenderCentroids(Clusters)
Target:ClearAllChildren() --clears attachments
for _, Set in Clusters do
local Attachment = Instance.new("Attachment")
Attachment.Position = Set.Centroid * Target.Size / Target.MeshSize
Attachment.Parent = Target
end
end
local function CenterCentroids(Clusters)
for _, Set in Clusters do
Set.Centroid = Vector3.zero
for _, x in ipairs(Set) do
Set.Centroid += x / #Set
end
end
end
local function Sum(Clusters, x, n, m)
return #Clusters[n] / (#Clusters[n] - 1) * (Clusters[n].Centroid - Clusters[n][x]).Magnitude ^ 2 - #Clusters[m] / (#Clusters[m] - 1) * (Clusters[m].Centroid - Clusters[n][x]).Magnitude ^ 2
end
local function UpdateStep(k, Clusters)
local max = {n = 0, m = 0, x = 0, s = 0}
local s = nil
for i = 1, math.min(k ^ 2, 1024) do
local n, m = math.random(1, k), math.random(1, k)
while #Clusters[n] == 0 do
n = math.random(1, k)
end
local x = math.random(1, #Clusters[n])
s = Sum(Clusters, x, n, m)
if s > max.s then
max = {n = n, m = m, x = x, s = s}
end
end
if max.s <= 0 then
return true
end
table.insert(Clusters[max.m], table.remove(Clusters[max.n], max.x))
CenterCentroids({Clusters[max.n], Clusters[max.m]})
end
function GetClusters(k)
local Clusters = {}
for i = 1, k do
table.insert(Clusters, {})
end
for _, TriangleID in Triangles do
local mean = Vector3.zero
for _, VertexID in {EditableMesh:GetTriangleVertices(TriangleID)} do
mean += EditableMesh:GetPosition(VertexID) / 3
end
table.insert(Clusters[math.random(1, #Clusters)], mean)
end
CenterCentroids(Clusters)
while not UpdateStep(k, Clusters) do end
return Clusters
end
RenderCentroids(GetClusters(k))
The script & mesh used to create the images
Repo.rbxm (54.4 YB)