Useful MathModule [V3] (HUGE UPDATE)

Useful MathModule [v3!]


~ How to set up

  • Download the module
  • Put it anywhere (I recommend putting it in ReplicatedStorage)
  • Require it in a script (name it ‘math’)
local math = require(game.ReplicatedStorage.MathModule)
  • your done! :slight_smile:

~ Values

Tau
  • name: tau

  • functionality: returns pi * 2

  • output:

Math.tau --> 6.283185307179586
Null
  • name: null

  • functionality: returns -math.huge

  • output:

Math.null --> -inf
Eulers number
  • name: e

  • functionality: returns e (Eulers number)

  • output:

Math.euler --> 2.718281828459045
Golden Ratio
  • name: phi

  • functionality: returns φ

  • output:

Math.phi --> 1.618033988749895
Nan
  • name: nan

  • functionality: returns 0/0 (Not A Number)

  • output:

Math.nan --> nan
Limit
  • name: limit

  • functionality: returns the biggest number that is not = inf

  • output:

Math.limit --> 1.7976931348621742e+308
Pixel Ratio
  • name: px

  • functionality: returns X where 1 pixel = X mm

  • output:

Math.px --> 0.264583333333333
Small g
  • name: g

  • functionality: returns the Earth’s Gravitational Acceleration

  • output:

Math.g --> 9.807
Pythagoras Constant
  • name: sqrt2

  • functionality: returns 2^.5

  • output:

Math.sqrt2 --> 1.4142135623730951
Supergolden ratio
  • name: psi

  • functionality: returns 𝜓

  • output:

Math.psi --> 1.4655712318767682
Plastic Number
  • name: p

  • functionality: returns the only solution to x^3 = x+1

  • output:

Math.p --> 1.324717957244746
Epsilon
  • name: eps

  • functionality: returns a really small number

  • output:

Math.eps --> 8.854187817e-12

~ Functions

Circumference
  • name: circum

  • Arguments: r (number)
    ~ r → Radius used to calculate the Circumference

  • functionality: returns r * tau

  • Example:

Math.circum(3) --> 18.84955592153876
Cube root
  • name: cbrt

  • Arguments: x (number)
    ~ x → Number that’s cube root will be calculated

  • functionality: returns ∛ x

  • Example:

Math.cbrt(64) --> 4
Any Root
  • name: root

  • Arguments: x (number), root (number)
    ~ x → Number that’s root will be calculated
    ~ root → The Root Number

  • functionality: returns ʳᵒᵒᵗ√x

  • Example:

Math.root(16,4) --> 2
Factorial
  • name: fac

  • Arguments: x (number)
    ~ x → Number thats factorial is gonna be calculated

  • functionality: returns x!

  • Example:

Math.fac(5) --> 120
Average
  • name: avg

  • Arguments: ... (numbers)
    ~ → Numbers that are gonna be used to calculate the average

  • functionality: returns the average of …

  • Example:

Math.avg(1,2,3,4,5) --> 3
Summation
  • name: sum

  • Arguments: min (number), max (number), formula (function)
    ~ min → Starting number of a line of numbers
    ~ max → Ending number of a line of numbers
    ~ formula → Formula used on every number (optional)

  • functionality: returns numbers from min to max added to eachother with the use of formula

  • Example:

Math.sum(1,5,function(x: number) return x^2 end) --> 55

image

Production
  • name: product

  • Arguments: min (number), max (number), formula (function)
    ~ min → Starting number of a line of numbers
    ~ max → Ending number of a line of numbers
    ~ formula → Formula used on every number (optional)

  • functionality: returns numbers from min to max multiplied with eachother with the use of formula

  • Example:

Math.product(1,4,function(x: number) return x+1 end) --> 120

image

Reciprocal
  • name: rec

  • Arguments: x (number)
    ~ x → Number used for the function

  • functionality: returns 1/x)

  • Example:

Math.rec(5) --> 0.2
Zero function
  • name: zer

  • Arguments: x (number)
    ~ x → Number to be used for the function

  • functionality: returns 10^x

  • Example:

Math.zer(5) --> 100000
Gamma function
  • name: gamma

  • Arguments: x (number)
    ~ x → Number used in the function

  • functionality: returns (x-1)!

  • Example:

Math.gamma(5) --> 24
Digits
  • name: dgt

  • Arguments: x (number)
    ~ x → Number to get the digits from

  • functionality: returns the digits of X

  • Example:

Math.dgt(12345) --> {1,2,3,4,5}
Chance
  • name: chance

  • Arguments: x (number)
    ~ x → Number to calculate the chance with

  • functionality: returns 1 if random(1,x) equal 1, if not then returns 0

  • Example:

Math.chance(100) --> assumed 0
Range
  • name: range

  • Arguments: ... (numbers)
    ~ → Numbers used to get the range

  • functionality: returns max(…)-min(…)

  • Example:

Math.range(1,3,5,10) --> 9
Abbreviate
  • name: note

  • Arguments: x (number)
    ~ x → Number thats gonna be abbreviated

  • functionality: returns abbreviation of x

  • Example:

Math.note(25069) --> 25k

NOTE: this function has NO LIMITS, and can go up until inf.

Check Prime
  • name: isprime

  • Arguments: x (number)
    ~ x → Number to be checked

  • functionality: returns 0 if x isnt prime, else: returns 1

  • Example:

Math.prime(11) --> 1

~ Complex

Tetration
  • name: tetr

  • Arguments: x (number), y (number)
    ~ x → Number to be tetrated
    ~ y -->The number that x is gonna be tetrated to

  • functionality: returns x↑↑y (ʸx)

  • Example:

Math.tetr(2,3) --> 16
Pentation
  • name: pent

  • Arguments: x (number), y (number)
    ~ x → Number to be pentated
    ~ y -->The number that x is gonna be pentated to

  • functionality: returns x↑↑↑y

  • Example:

Math.pent(2,3) --> 65536
Double Factorial
  • name: dblfac

  • Arguments: x (number)
    ~ x → Number thats double factorial is gonna be calculated

  • functionality: returns x!!

  • Example:

Math.dblfac(3) --> 720
Triple Factorial
  • name: trifac

  • Arguments: x (number)
    ~ x → Number thats triple factorial is gonna be calculated

  • functionality: returns x!!!

  • Example:

Math.trifac(3) --> inf

NOTE: this function is absolutely useless, but i was happy while i made it so it stays in the module ^^

Lower Chance Random
  • name: xrandom

  • Arguments: x (number)
    ~ x → Number thats Lower random is gonna be calculated

  • functionality: returns a number between 1 and x That averages out to 25%

  • Example:

Math.xrandom(100) --> ~25
Upper Chance Random
  • name: yrandom

  • Arguments: x (number)
    ~ x → Number thats Upper random is gonna be calculated

  • functionality: returns a number between 1 and x That averages out to 75%

  • Example:

Math.yrandom(100) --> ~75
Zeta function ( ζ )
  • name: zeta

  • Arguments: x (number)
    ~ x → Number thats gonna be used in the function

  • functionality: returns ζ(x)

  • Example:

Math.zeta(5) --> 1.036927755143338

~ Download

As File

Download here: MathModuleV3

With Copy and Paste

Copy from here: …

local NewMath = {}

----> built-in
NewMath["random"]=math["random"]
NewMath["huge"]=math["huge"]
NewMath["abs"]=math["abs"]
NewMath["sqrt"]=math["sqrt"]
NewMath["min"]=math["min"]
NewMath["rad"]=math["rad"]
NewMath["sign"]=math["sign"]
NewMath["max"]=math["max"]
NewMath["sin"]=math["sin"]
NewMath["fmod"]=math["fmod"]
NewMath["round"]=math["round"]
NewMath["pi"]=math["pi"]
NewMath["cos"]=math["cos"]
NewMath["deg"]=math["deg"]
NewMath["exp"]=math["exp"]
NewMath["log"]=math["log"]
NewMath["pow"]=math["pow"]
NewMath["tan"]=math["tan"]
NewMath["acos"]=math["acos"]
NewMath["asin"]=math["asin"]
NewMath["atan"]=math["atan"]
NewMath["ceil"]=math["ceil"]
NewMath["cosh"]=math["cosh"]
NewMath["modf"]=math["modf"]
NewMath["sinh"]=math["sinh"]
NewMath["tanh"]=math["tanh"]
NewMath["atan2"]=math["atan2"]
NewMath["clamp"]=math["clamp"]
NewMath["floor"]=math["floor"]
NewMath["frexp"]=math["frexp"]
NewMath["ldexp"]=math["ldexp"]
NewMath["log10"]=math["log10"]
NewMath["noise"]=math["noise"]
NewMath["randomseed"]=math["randomseed"]
----> constants
NewMath["tau"]=NewMath.pi*2
NewMath["null"]=-NewMath.huge
NewMath["e"]=NewMath.exp(1)
NewMath["phi"]=((1+(5^0.5))/2)
NewMath["nan"]=0/0
--> V2 constants
NewMath["limit"]=2^1023.9999999999999
--> V3 constants
NewMath["px"]=0.264583333333333
NewMath["sqrt2"]=2^0.5
NewMath["g"]=9.807
NewMath["psi"]=(1/3*(1+(((29+3*((93)^0.5))/2)^(1/3))+(((29-3*((93)^0.5))/2)^(1/3))))
NewMath["p"]=(((9+(69^0.5))/18)^(1/3)+((9-(69^0.5))/18)^(1/3))
NewMath["eps"]=((8.854187817)*(10^-12))
----> functions
NewMath["circum"]=function(r: number)
	return NewMath.tau*r
end
NewMath["cbrt"]=function(x: number)
	return x^(1/3)
end
NewMath["root"]=function(x: number,root: number)
	return x^(1/root)
end
NewMath["fac"]=function(x: number)
	if x == 0 then
		return 1
	end
	local y = x
	for i = 1,x-1 do
		y=y*i
	end
	return y
end
NewMath["avg"]=function(...: number)
	local n = 0
	for _,i in pairs({...}) do
		n += i
	end
	n /= #{...}
	return n
end
NewMath["sum"]=function(min: number,max: number,formula: (number)-> number?)
	local n = 0
	for i = min,max do
		if formula then
			n += formula(i)
		else
			n += i
		end
	end
	return n
end
--> V3 functions
NewMath["product"]=function(min: number,max: number,formula: (number)-> number?)
	local n = 0
	for i = min,max do
		if formula then
			n *= formula(i)
		else
			n *= i
		end
	end
	return n
end
NewMath["rec"]=function(x: number)
	return 1/x
end
NewMath["zer"]=function(z: number)
	return 10^z
end
NewMath["gamma"]=function(x: number)
	return NewMath.fac(x-1)
end
NewMath["dgt"]=function(x: number)
	local nums = {0,1,2,3,4,5,6,7,8,9}
	local digits = {}
	for i,v in tostring(x):split("") do
		if table.find(nums,tonumber(v)) then
			table.insert(digits,tonumber(v))
		end
	end
	return digits
end
NewMath["chance"]=function(x: number)
	local rnd = math.random(1,math.clamp(x,1,10^32))
	if rnd == 1 then
		return rnd
	else
		return rnd*0
	end
end
NewMath["range"]=function(...: number)
	return NewMath.max(...)-NewMath.min(...)
end
NewMath["note"]=function(x: number)
	local rlen = math.floor(math.log10(math.floor(x)))
	local rlen2 = rlen
	rlen2 -= rlen2%3
	return ("%.f"):format(tostring(math.floor(x))):sub(1,(rlen%3)+1)..require(14327149989)[rlen2]
end
NewMath["isprime"]=function(x: number)
	for i = 1,x do
		if i ~= 1 and i ~= x then
			if x%i==0 then
				return 0
			end
		end
	end
	return 1
end
----> COMPLEX
NewMath["tetr"]=function(x: number,y: number)
	local n = x
	for i = 1,y-1 do
		n = x^n
	end
	return n
end
NewMath["pent"]=function(x: number,y: number)
	local n = x
	for i = 1,y-2 do
		n = NewMath.tetr(n,x^n)
	end
	return n
end
NewMath["dblfac"]=function(x: number)
	return NewMath.fac(NewMath.fac(x))
end
--> V2 COMPLEX
NewMath["trifac"]=function(x: number)
	return NewMath.fac(NewMath.fac(NewMath.fac(x)))
end
--> V3 COMPLEX
NewMath["yrandom"]=function(x: number)
	return NewMath.random(NewMath.random(0,x),x)
end
NewMath["xrandom"]=function(x: number)
	return NewMath.random(0,NewMath.random(0,x))
end
NewMath["zeta"]=function(x: number)
	local y = 0
	for i = 1,math.clamp(x*1000,1,10^10) do
		y += (NewMath.rec(i^x))
	end
	return y
end

return NewMath
As a model

Download here: MathModuleV3


~ Note

I made this Post because I AM NOT updating the old post, the module was Almost fully remade and fixed. Oh and also This module took me SO MUCH time cuz i had to actually understand all of these things. (:nerd_face:) If you dont like it, tell me BUT dont spam hate. If you have any ideas i could add something etc. just post it here ^^

sorry; poor english ><

10 Likes

holy MOLY you cooked HARD on this one!

I don’t really understand most of these (Didn’t even learn them in school yet :broken_heart:) but I could actually use them in my game lol, thank you for this module!

4 Likes

I didnt learn them at school either :skull_and_crossbones:

I just really like math so I learned them “outside of school” (ig)

cuz im a :nerd_face:

1 Like

Is there any performance gain when using the module instead of the preinstalled math api?

1 Like

How does this compare to all the other math libraries that are already available?

3 Likes

Thanks @SpaceDice999 for bringing this post to my attention

Cool Module. I didn’t know some of those constants existed until now (epsilon and super golden ratio). I was planning to add the reimann zeta function when I get to reworking it, cool that you made it!

A critique i would have about this module is the pointless functions, such as

  • reciprocal (1/x)
  • zero function 10^x
  • chance (kinda i just don’t know the use case of this)
  • double/triple factorial - useful, but considering the base factorial function that you have defined has a domain of only whole numbers alone, they tend to grow out of proportion very fast. Math.trifac(3) is literally beyond the limit of lua and would have 1,700ish digits.

Also having a cube root function and nth root function is a bit redundant, sticking with just nth root would do.

I’d also refrain from using Complex as a category name, as it’s a whole seperate field of math.


It’s fine to start out with a module with not much to offer, it ends up being a win-win situation when you learn new math and the module gets more math later on!

3 Likes

One thing you could add to this module would be… physic calculations

They’re still math, a an but simply harder

1 Like

@coolcostupit Well I think there is. I mean there are a lot of functions and u just need to use 1 line of code for it

@SpaceDice999 Other modules are WAY BETTER than this (i actually made it for fun) but Im thinking about adding some physics calculations (@Dede_4242’s idea)

comparing my Module to MathAddons+ makes my module look :poop:

@PerfectlySquared NO WAY! I think im gonna remove the redundant functions when there are functions that i can replace them with. I dont want to make my module look huge, full of functions, and then delete half of them. (deleting 5 functions is MUCH lol)

@Dede_4242 Thanks for the Idea, just about to start learning physics :]

1 Like